

DATA SHEET

Two (2) fibers Detachable DisplayPort 1.2 Extender, DPFX-200-TR

Contents

- **♦** Description
- **♦** Features
- Applications
- **♦** Technical Specifications
- **♦** Connection with DPAX
- Operating Conditions
- Drawing of Module
- Drawing of Cable Connection
- **♦** DP Pin Description

OPTICIS HQ

Opticis Co., Ltd. # 16Fl, Kins Tower Jeongja 331, 8 Sungnam-daero, Bundang-gu Sungnam-si, Gyunggi-do, 463-782 South Korea

Te I: +82 (31) 719-8033 Fax: +82 (31) 719-8032 www.opticis.com tosales@opticis.com

Description

New optical DisplayPort 1.2 extender, DPFX-200-TR consists of transmitter module and receiver module, each of which has Two (2) LC fibers connection and is designed compact enough to be fitted into various installation environments.

It enables to transmit 4K(4096x2160) at 60Hz signal up to 100m (328feet), avoiding any tricks like scaling or data compression for lessening a burden of data transmission. It provides total data throughput 21.6Gbps (5.4Gbps per lane).

The pure fiber connection by two (2) LC fibers connector between transmitter and receiver, gives clean, secure and easy installation with perfect electrical isolation, but without electrical hazard and interference.

The DPFX-200-TR can be operated by 3.3V power from DisplayPort interface, basically. Two (2) Micro USB to USB cables will be provided in shipping group.

The shipping items are shown as follows;

- 1) One (1) Transmitter (Tx) and One (1) Receiver (Rx)
- 2) One (1) 0.2m Male to Female DisplayPort copper cable
- 3) Two (2) Micro USB to USB cables
- 4) User's Manual
- Other options contact with sales office

Features

- Supports DisplayPort 1.2 standards
- Extends 4K(4096x2160) at 60Hz
- Transmits DP data up to 100m (328feet) over two (2) LC multi-mode fibers (OM3).
- Offers total data rate 21.6Gbps (5.4Gbps per lane)
- Supports auxiliary channel
- Compact design allows direct connect to the DP display
- Directly connected with small form factor
- Operated by 3.3V from DisplayPort interface or USB power
- Data security with negligible EMI emission.
- Includes two (2) Micro USB to USB cables for the transmitter and receiver
- Certification: CE / FCC, UL IT, Laser Safety class 1

Applications

- Medical imaging
- Military
- Control room
- Simulator

Technical Specifications

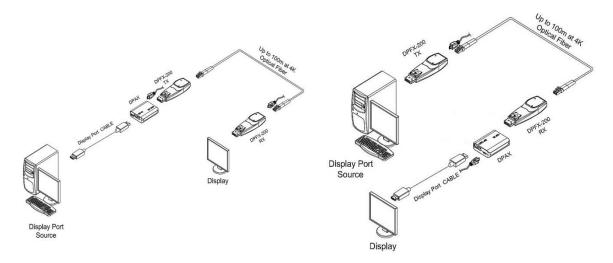
	Parameter	Specifications		
Components	Laser Diodes in TX Module	Multi-mode VCSEL (Vertical Cavity Surface Emitting Laser)		
·	Photo Diodes in Rx Module	PIN-PD		
	Input and Output Signals	ANSI 8B/10 Level (complying with DP1.2)		
Electrical	Data Transfer Rate (Graphic Data)	Max. 5.4Gbps		
Electrical	Total Jitter at the end of Rx output	Max. 0.6UI		
	Skew inter-channels	Max. 6ns		
Optical Link Power Budget		TBD		
Mechanical Module dimension (WDH)		26 x 72 x 15mm		
Connect	Optical Connector	Duplex LC connectors		
	Electric Connector Type from Systems and to Displays	20pin DP Receptacle Connector		
	Recommended Fiber	OM3(50/125 um) Multi-mode Glass Fiber		

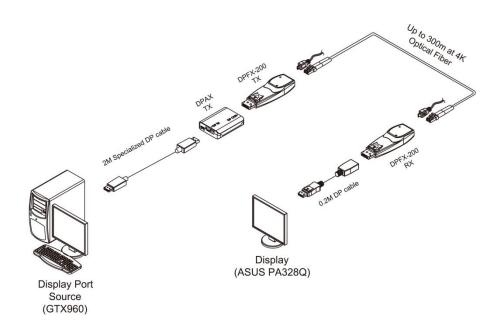
Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these of any other conditions in excess of those given in the operational sections of the datasheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Supply Adapter Voltage	V _{CC}	-	6.5	V
Operating Temperature	T _{OP}	0	50	C
Operating Relative Humidity	RH _{OP}	10	85"	%RH
Storage Temperature	Tstg	-30	70	C
Storage Relative Humidity	RHstg	10	95 ²⁾	%RH

Note


^{1), 2)} Under the conditions of No drops of dew


Connection with DPAX

Opticis DisplayPort Data Recovery Repeater, DPAX, is an active repeater for DisplayPort video signal to increase video transmission.

With using DPAX, DPFX-200 can extend its total transmission length even longer. DPAX can be connected any side of DPFX-200, however, to connect on TX side of DPFX-200, customized copper cable has to be used.

DPAX can improve transmission length of DPFX-200 via optical fiber. It has been confirmed that DisplayPort signal transmission length has improved up to 300m when using DPFX-200 with DPAX under certain environment such as below configuration. Each 200m and 300m of DisplayPort signal transmission has successfully tested when using GTX960 as a display source and ASUS PA328Q as a display.

Operating Conditions

Transmitter module: DPFX-200-T

	Parameter	Symbol	Minimum	Typical	Maximum	Units
	Supply Voltage	Vcc	4.5	5.0	5.5	V
ပ္သည	Supply Current	I _{TCC}	180	230	280	mA
Power Supply	Power Dissipation	P_{TX}	0.81	1.15	1.54	W
er	Power Supply Rejection (Note1)	PSR		50		mV_{p-p}
78 A D	Data Output Load	R_{LD}		50		Ω
DATA ANSI 8b/10b	Transmitter Differential Input Voltage Swing (Peak-to-Peak)	V_{ID}	0.4	1.6	V_{ID}	V
	Output Optical Power	Po			1	dBm
	Wavelength	λ	825		990	nm
_ o o	Spectral width in RMS	Δλ			3	nm
Optical Link (Note3)	Relative Intensity of Noise (Note2)	RIN		-20		dB/Hz
	Extinction Ratio	Ext	4			dB
	Rising/Falling Time	T_{rise}/T_{fall}			100	ps
	Jitter in p-p value (Note3)	T _{jitter}			100	ps

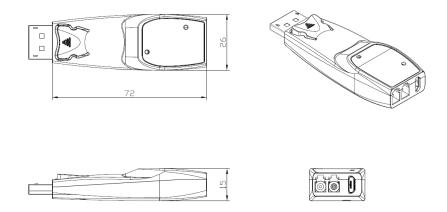
Note1. Tested with a 50mV_{p-p} sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.

Note2. Measure in 1GHz of frequency bandwidth

Note3. Use PPG (Pulse Pattern Generator) source with jitter 50ps

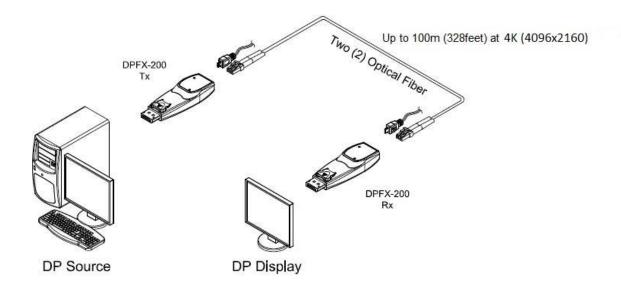
Receiver module: DPFX-200-R

	Parameter	Symbol	Minimum	Typical	Maximum	Units
	Supply Voltage	Vcc	4.5	5.0	5.5	V
Sr Po	Supply Current	I _{RCC}	220	270	320	mA
Power Supply	Power Dissipation	P _{RX}	0.99	1.35	1.76	W
er	Power Supply Rejection (Note4)	PSR		50		mV_{p-p}
DATA ANSI 8b/10b	Data Input Load	R _{LD}		50		Ω
	Receiver Data Output Voltage Swing (Peak-to-Peak)	VODp-p		600		mV _{p-p}
	Receiving Optical Power	Po	TBD		1	dBm
Optical Link	Receiving Wavelength	λ	825		990	nm
	Signal_Detect Good	SDg			TBD	dBm
	Signal_Detect Fail	SDf	TBD			dBm
	Link Power Budget	P _{bgt}	TBD			dB
	Total Jitter (note 5)	TR _{jitter}			0.6	UI


Note4. Tested with a 50mV_{p-p} sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced. Note5. It is measured as total jitters including Tx and Rx modules under maximum extension, 100 meters with 5.4Gbps.

Recommended specifications of fiber-optic cable

Parameters	Conditions	Specifications
Fiber Type		50μm Multi-mode Graded Index Glass Fiber
Modal Bandwidth	$\lambda = 850$ nm	Min. 500 MHz km
Fiber Cable Attenuation	$\lambda = 850$ nm	Max. 2.5dB/km
Extension Distance		10 – 1650ft (500 meters)
No. of Ferrules	Duplex LC	2 ferrule
Skew		Max. 0.4ns
Insertion Attenuation		Max. 0.5dB
Total Optical Attenuation	In 330 ft (100 meter) extension	Max. 1.5dB



Drawing of Module

Note: The transmitter, DPFX-200-T and the receiver, DPFX-200-R have the same mechanical dimensions

Drawing of Cable Connection

DisplayPort Pin Description

TX Module

Pin	Symbol	Mating Row Contact Location	Functional Description	
1	ML_Lane0(p)	Тор	Displayport Data Lane0 Positive	
2	GND	Bottom	Ground	
3	ML_Lane0(n)	Тор	Displayport Data Lane0 Negative	
4	ML_Lane1(p)	Bottom	Displayport Data Lane1 Positive	
5	GND	Тор	Ground	
6	ML_Lane1(n)	Bottom	Displayport Data Lane1 Negative	
7	ML_Lane2(p)	Тор	Displayport Data Lane2 Positive	
8	GND	Bottom	Ground	
9	ML_Lane2(n)	Тор	Displayport Data Lane2 Negative	
10	ML_Lane3(p)	Bottom	Displayport Data Lane3 Positive	
11	GND	Тор	Ground	
12	ML_Lane3(n)	Bottom	Displayport Data Lane3 Negative	
13	CONFIG1	Тор	Cable Adaptor Detect	
14	CONFIG2	Bottom	None	
15	AUX CH(p)	Тор	Displayport Aux Channel Positive	
16	GND	Bottom	Ground	
17	AUX CH(n)	Тор	Displayport Aux Channel Negative	
18	Hot Plug Detect	Bottom	HPD is used to detect a sink device by the source device	
19	Return	Тор	None	
20	DP_PWR	Bottom	Power for Connector (3.3V 500mA)	

RX Module

Pin	Symbol	Mating Row Contact Location	Functional Description	
1	ML_Lane3(n)	Тор	Displayport Data Lane3 Negative	
2	GND	Bottom	Ground	
3	ML_Lane3(p)	Тор	Displayport Data Lane3 Positive	
4	ML_Lane2(n)	Bottom	Displayport Data Lane2 Negative	
5	GND	Тор	Ground	
6	ML_Lane2(p)	Bottom	Displayport Data Lane2 Positive	
7	ML_Lane1(n)	Тор	Displayport Data Lane1 Negative	
8	GND	Bottom	Ground	
9	ML_Lane1(p)	Тор	Displayport Data Lane1 Positive	
10	ML_Lane0(n)	Bottom	Displayport Data Lane0 Negative	
11	GND	Тор	Ground	
12	ML_Lane0(p)	Bottom	Displayport Data Lane0 Positive	
13	CONFIG1	Тор	Cable Adaptor Detect	
14	CONFIG2	Bottom	None	
15	AUX CH(p)	Тор	Displayport Aux Channel Positive	
16	GND	Bottom	Ground	
17	AUX CH(n)	Тор	Displayport Aux Channel Negative	
18	Hot Plug Detect	Bottom	HPD is used to detect a sink device by the source device	
19	Return	Тор	None	
20	DP_PWR	Bottom	Power for Connector (3.3V 500mA)	